
CS250P: Computer Systems Architecture
Pipelining

Sang-Woo Jun

Fall 2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

State of our understanding

❑ Complex logic has high propagation delay
o Which leads to lower clock speed

❑ Naturally, we must trade-off complexity of the processor vs. clock speed
o Is this true?

❑ Q1. Can we make complex processors run at higher clock speeds

❑ Q2. Will higher clock speeds actually lead to higher performance

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

But before we start…

Performance Measures

❑ Two metrics when designing a system

1. Latency: The delay from when an input enters the system until its
associated output is produced

2. Throughput: The rate at which inputs or outputs are processed

❑ The metric to prioritize depends on the application
o Embedded system for airbag deployment? Latency

o General-purpose processor? Throughput

Performance of Combinational Circuits

❑ For combinational logic
o latency = tPD

o throughput = 1/tPD

X Y

Is this an efficient way of using hardware?

X

F(X)

G(X)

H(X)

F and G not doing work!
Just holding output data

Source: MIT 6.004 2019 L12

Pipelined Circuits

❑ Pipelining by adding registers to hold F and G’s output
o Now F & G can be working on input Xi+1 while H is performing computation on Xi

o A 2-stage pipeline!

o For input X during clock cycle j, corresponding output is emitted during clock j+2.

Y

Assuming latencies of 15, 20, 25…

F(X)

G(X)

H(X)

Assuming ideal registers

15

20

Source: MIT 6.004 2019 L12

25

Pipelined Circuits

20+25=45 25+25=50

Latency Throughput

Unpipelined 45 1/45

2-stage pipelined 50 1/25(Worse!) (Better!)

Source: MIT 6.004 2019 L12

Pipeline conventions

❑ Definition:
o A well-formed K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K

registers on every path from an input to an output.

o A combinational circuit is thus a 0-stage pipeline.

❑ Composition convention:
o Every pipeline stage, hence every K-Stage pipeline, has a register on its output (not

on its input).

❑ Clock period:
o The clock must have a period tCLK sufficient to cover the longest register to register

propagation delay plus setup time.

K-pipeline latency = K * tCLK K-pipeline throughput = 1 / tCLK

Source: MIT 6.004 2019 L12

Ill-formed pipelines

❑ Is the following circuit a K-stage pipeline? No

❑ Problem:
o Some paths have different number of registers

o Values from different input sets get mixed! -> Incorrect results
• B(Yt-1,A(Xt)) <- Mixing values from t and t-1

A

B

CX

Y

2

2

1

Source: MIT 6.004 2019 L12

A pipelining methodology

❑ Step 1:
o Draw a line that crosses every output in the

circuit, and mark the endpoints as terminal points.

❑ Step 2:
o Continue to draw new lines between the terminal

points across various circuit connections, ensuring t
hat every connection crosses each line in the same direction.

o These lines demarcate pipeline stages.

❑ Step 3:
o Add a pipeline register at every point where a separating line crosses a connection

Strategy: Try to break up high-latency elements,
make each pipeline stage as low-latency as possible!

Source: MIT 6.004 2019 L12

Pipelining example

❑ 1-pipeline improves neither L nor T

❑ T improved by breaking long combinational
path, allowing faster clock

❑ Too many stages cost L, not improving T

❑ Back-to-back registers are sometimes
needed for well-formed pipelines

Source: MIT 6.004 2019 L12

Hierarchical pipelining

❑ Pipelined systems can be hierarchical
o Replacing a slow combinational component with a k-pipe version may allow faster

clock

❑ In the example:
o 4-stage pipeline, T=1

Source: MIT 6.004 2019 L12

Sample pipelining problem

❑ Pipeline the following circuit for maximum throughput while minimizing
latency.
o Each module is labeled with its latency

2 3 4 2 1

4

What is the best latency and throughput achievable?

Source: MIT 6.004 2019 L12

Sample pipelining problem

❑ tCLK = 4

❑ T = ¼

❑ L = 4*4 = 16

2 3 4 2 1

4

Aside: When pipelines are not deterministic

❑ Lock-step pipelines are great when modules are deterministic
o Good for carefully scheduled circuits like a well-optimized microprocessor

❑ What if the latency of F is non-deterministic?
o At some cycles, F’s pipeline register may hold invalid value

o Pipeline register must be tagged with a valid flag

o How many pipeline registers should we add to G? Max possible latency?

o What if F and G are both non-deterministic? How many registers?

F

G

HX

Aside: FIFOs (First-In First-Out)

❑ Queues in hardware
o Static size (because it’s hardware)

o User checks whether full or empty before enqueue or dequeue

o Enqueue/dequeue in single cycle regardless of size or occupancy

o MUX! Large FIFO has long propagation delay

head

tail

…

D
EM

U
X M

U
XData

Enqueue signal

Full? Empty?

Dequeue signal

Data

Counting cycles:
Benefits of an elastic pipeline

❑ Assume F and G are multi-cycle, internally pipelined modules
o If we don’t know how many pipeline stages F or G has, how do we ensure correct

results?

❑ Elastic pipeline allows correct results regardless of latency
o If L(F) == L(G), enqueued data available at very next cycle (acts like single register)

o If L(F) == L(G) + 1, FIFO acts like two pipelined registers

o What if we made a 4-element FIFO, but L(F) == L(G) + 4?
• G will block! Results will still be correct!

• … Just slower! How slow? F

G

FX

?

L <- Latency in cycles

Measuring pipeline performance

❑ Latency of F is 3, Latency of G is 1, and we have a 2-element FIFO
o What would be the performance of this pipeline?

❑ One pipeline “bubble” every four cycles
o Duty cycle of ¾ !

F

G

HX

F

G

*Animation

Aside: Little’s law

❑ 𝐿 = 𝜆𝑊
o L: Number of requests in the system

o 𝜆: Throughput

o W: Latency

o Imagine a DMV office! L: Number of booths. (Not number of chairs in the room)

❑ In our pipeline example
o L = 3 (limited by pipeline depth of G)

o W = 4 (limited by pipeline depth of F)

o As a result: 𝜆 = ¾ ! F

G
How do we improve performance?
Larger FIFO, or
Replicate G! (round-robin use of G1 and G2)

CS250P: Computer Systems Architecture
Processor Microarchitecture – Pipelining

Sang-Woo Jun

Fall 2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Course outline

❑ Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly programming and conventions

❑ Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

❑ Part 3: Computer Architecture
o Simple and pipelined processors
o Computer Arithmetic
o Caches and the memory hierarchy

❑ Part 4: Computer Systems
o Operating systems, Virtual memory

How to build a computing machine?

❑ Pretend the computers we know and love have never existed

❑ We want to build an automatic computing machine to solve
mathematical problems

❑ Starting from (almost) scratch, where you have transistors and integrated
circuits but no existing microarchitecture
o No PC, no register files, no ALU

❑ How would you do it? Would it look similar to what we have now?

Aside: Dataflow architecture

❑ Instead of traversing over instructions to execute, all instructions are
independent, and are each executed whenever operands are ready
o Programs are represented as graphs

(with dependency information)

A “static” dataflow architecture

Did not achieve market success, (why?)
but the ideas are now everywhere
e.g., Out-of-Order microarchitecture

The von Neumann Model

❑ Almost all modern computers are based on the von Neumann model
o John von Neumann, 1945

❑ Components
o Main memory, where both data and programs are held

o Processing unit, which has a program counter and ALU

o Storage and I/O to communicate with the outside world

Central
Processing

Unit

Main
Memory

Storage
and I/O

Key idea!

Key Idea: Stored-Program Computer

❑ Very early computers were programmed by manually adjusting switches
and knobs of the individual programming elements
o (e.g., ENIAC, 1945)

❑ von Neumann Machines instead had a
general-purpose CPU, which loaded its
instructions also from memory
o Express a program as a sequence of coded

instructions, which the CPU fetches, interprets,
and executes

o “Treating programs as data”

ENIAC, Source: US Army photo

Similar in concept to a universal Turing machine (1936)

Example: Harvard Mark 1

❑ Built 1944 (near the end of WW2) using switches, relays, shafts, etc
o Used to crunch numbers for Manhattan project

o Programmed by John von Neumann and others

Example: Harvard Mark 1

❑ Slow by today standards!
o 3 Additions/s, 6 secs for mults, etc

Programs/data entered through tape,
no control flow instructions!

(Loops meant physically gluing tape into loops)

Data also entered
via switches

Photo: ArnoldReinhold, Wikimedia commons

Another example: MITS Altair (1978)

❑ Built using Intel 8080 @ 2 MHz

❑ Only input are front panel switches

❑ Only output are front panel LEDs

❑ First successful personal computer

❑ Bill Gates sold his first software
o Altair BASIC

o Tape reader
expansion

Actually a bad example… Programs were entered via switches/tape
but 8080 had control flow instructions!)

von Neumann and Turing machine

❑ Turing machine is a mathematical model of computing machines
o Proven to be able to compute any mechanically computable functions

o Anything an algorithm can compute, it can compute

❑ Components include
o An infinite tape (like memory) and a header which can read/write a location

o A state transition diagram (like program) and a current location (like pc)
• State transition done according to current value in tape

❑ Only natural that computer designs
gravitate towards provably universal models

Source: Manolis Kamvysselis

Stored program computer, now what?

❑ Once we decide on the stored program computer paradigm
o With program counter (PC) pointing to encoded programs in memory

❑ Then it becomes an issue of deciding the programming abstraction
o Instruction set architecture, which we talked about

❑ Then, it becomes an issue of executing it quickly and efficiently
o Microarchitecture! – Improving performance/efficiency/etc while maintaining ISA

abstraction

o Which is the core of this class, starting now

The classic RISC pipeline

Fetch Decode Execute Memory
Write
Back

❑ Many early RISC processors had very similar structure
o MIPS, SPARC, etc…

o Major criticism of MIPS is that it is too optimized for this 5-stage pipeline

❑ RISC-V is also typically taught using this structure as well

Remember:
Super simplified processor operation
inst = mem[PC]

next_PC = PC + 4

if (inst.type == STORE) mem[rf[inst.arg1]] = rf[inst.arg2]

if (inst.type == LOAD) rf[inst.arg1] = mem[rf[inst.arg2]]

if (inst.type == ALU) rf[inst.arg1] = alu(inst.op, rf[inst.arg2], rf[inst.arg3])

if (inst.type == COND) next_PC = rf[inst.arg1]

PC = next_PC

The classic RISC pipeline

❑ Fetch: Request instruction fetch from memory

❑ Decode: Instruction decode & register read

❑ Execute: Execute operation or calculate address

❑ Memory: Request memory read or write

❑ Writeback: Write result (either from execute or memory) back to register

Why these 5 stages? Why not 1 or 6?

Reminder:
A high-level view of computer architecture

CPU

Instruction
cache

Data
cache

Shared cache

DRAM

Low latency
(~1 cycle)

High latency
(100s~1000s of cycles)

Will deal with caches in detail later!

Designing a microprocessor

❑ Many, many constraints processors optimize for, but for now:

❑ Constraint 1: Circuit timing
o Processors are complex! How do we organize the pipeline to process instructions

as fast as possible?

❑ Constraint 2: Memory access latency
o Register files can be accessed as a combinational circuit, but it is small

o All other memory have high latency, and must be accessed in separate
request/response
• Memory can have high throughput, but also high latency

Memory will be covered in detail later!

The most basic microarchitecture

PC

Memory Interface

Instruction
Decoder

Register
File

ALU

❑ Because memory is not combinational, our RISC ISA requires at least
three disjoint stages to handle
o Instruction fetch

o Instruction receive, decode, execute (ALU), register file access, memory request

o If mem read, write read to register file

❑ Three stages can be implemented as a
Finite State Machine (FSM)

① ② ③Will this processor be fast?
Why or why not?

Limitations of our simple microarchitecture

❑ Stage two is disproportionately long
o Very long critical path, which limits the clock speed of the whole processor

o Stages are “not balanced”

❑ Note: we have not pipelined things yet!

PC

Memory Interface

Instruction
Decoder

Register
File

ALU

① ② ③

*Critical path depends on
the latency of each component

Limitations of our simple microarchitecture

❑ Let’s call our stages Fetch(“F”), Execute(“E”), and Writeback (“W”)

❑ Speed of our simple microarchitecture, assuming:
o Clock-synchronous circuits, single-cycle memory

❑ Lots of time not spent doing useful work!
o Can pipelining help with performance?

time

instr. 1

instr. 2

F WE

F WE

Clock cycle due to critical path of Execute

F WE

F WE

Pipelined processor introduction

❑ Attempt to pipeline our processor using pipeline registers/FIFOs

❑ Much better latency and throughput!
o Average CPI reduced from 3 to 1!

o Still lots of time spent not doing work. Can we do better?

Fetch WritebackExecute

time

instr. 1

instr. 2

F WE

F WE

* We will see soon why pipelining
a processor isn’t this simple

Note we need a memory interface with two concurrent interfaces now! (For fetch and execute)
Remember instruction and data caches!

Building a balanced pipeline

❑ Must reduce the critical path of Execute

❑ Writing ALU results to register file can be moved to “Writeback”
o Most circuitry already exists in writeback stage

o No instruction uses memory load and ALU at the same time
• RISC!

PC

Memory Interface

Instruction
Decoder

Register
File

ALU

Building a balanced pipeline

❑ Divide execute into multiple stages
o “Decode”

• Extract bit-encoded values from instruction word

• Read register file

o “Execute”
• Perform ALU operations

o “Memory”
• Request memory read/write

❑ No single critical path which reads and writes to register file in one cycle

Fetch WritebackDecode Execute Memory

Results in a small number of stages with relatively good balance!

Execute

Ideally balanced pipeline performance

❑ Clock cycle: 1/5 of total latency

❑ Circuits in all stages are always busy with useful work

time

Fetch WritebackDecode Execute Memory

Fetch WritebackDecode Execute Memory

Fetch WritebackDecode Execute Memory

instr. 1

instr. 2

instr. 3

Aside: Real-world processors have wide
range of pipeline stages

Name Stages

AVR/PIC microcontrollers 2

ARM Cortex-M0 3

Apple A9 (Based on ARMv8) 16

Original Intel Pentium 5

Intel Pentium 4 30+

Intel Core (i3,i5,i7,…) 14+

RISC-V Rocket 6

Designs change based on requirements!

Will our pipeline operate correctly?

Fetch WritebackDecode Execute Memory

Memory Interface

Register
File

A problematic example

❑ What should be stored in data+8? 3, right?

❑ Assuming zero-initialized register file, our pipeline will write zero
Why? “Hazards”

	Slide 1: CS250P: Computer Systems Architecture Pipelining
	Slide 2: State of our understanding
	Slide 3: Eight great ideas
	Slide 4: Performance Measures
	Slide 5: Performance of Combinational Circuits
	Slide 6: Pipelined Circuits
	Slide 7: Pipelined Circuits
	Slide 8: Pipeline conventions
	Slide 9: Ill-formed pipelines
	Slide 10: A pipelining methodology
	Slide 11: Pipelining example
	Slide 12: Hierarchical pipelining
	Slide 13: Sample pipelining problem
	Slide 14: Sample pipelining problem
	Slide 15: Aside: When pipelines are not deterministic
	Slide 16: Aside: FIFOs (First-In First-Out)
	Slide 17: Counting cycles: Benefits of an elastic pipeline
	Slide 18: Measuring pipeline performance
	Slide 19: Aside: Little’s law
	Slide 20: CS250P: Computer Systems Architecture Processor Microarchitecture – Pipelining
	Slide 21: Course outline
	Slide 22: How to build a computing machine?
	Slide 23: Aside: Dataflow architecture
	Slide 24: The von Neumann Model
	Slide 25: Key Idea: Stored-Program Computer
	Slide 26: Example: Harvard Mark 1
	Slide 27: Example: Harvard Mark 1
	Slide 28: Another example: MITS Altair (1978)
	Slide 29: von Neumann and Turing machine
	Slide 30: Stored program computer, now what?
	Slide 31: The classic RISC pipeline
	Slide 32: Remember: Super simplified processor operation
	Slide 33: The classic RISC pipeline
	Slide 35: Reminder: A high-level view of computer architecture
	Slide 36: Designing a microprocessor
	Slide 37: The most basic microarchitecture
	Slide 38: Limitations of our simple microarchitecture
	Slide 39: Limitations of our simple microarchitecture
	Slide 40: Pipelined processor introduction
	Slide 41: Building a balanced pipeline
	Slide 42: Building a balanced pipeline
	Slide 43: Ideally balanced pipeline performance
	Slide 44: Aside: Real-world processors have wide range of pipeline stages
	Slide 45: Will our pipeline operate correctly?
	Slide 46: A problematic example

